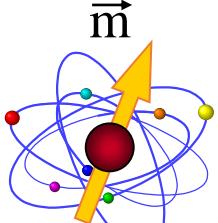


Lecture 4

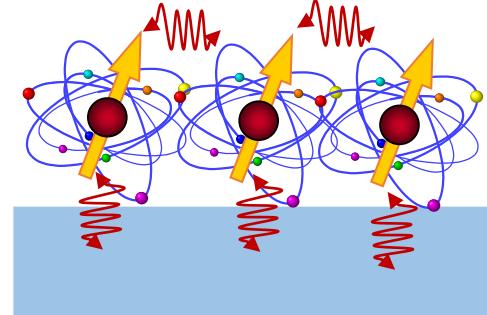
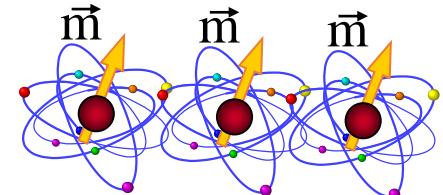
Magnetic anisotropy energy

The spintronics “goose game”

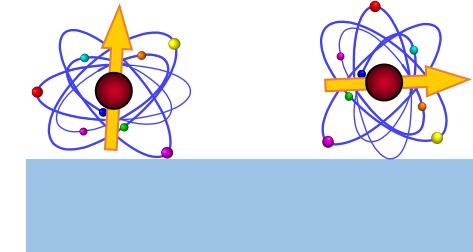
Atom magnetism



interactions between spins and with the supporting substrate

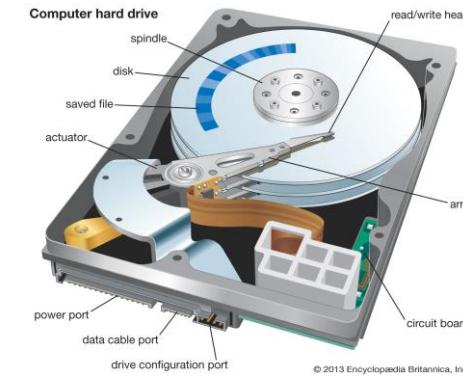
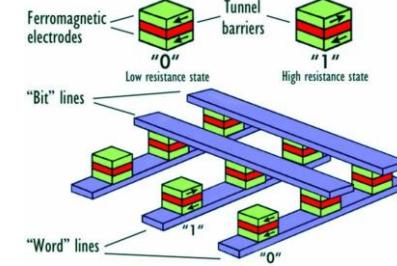
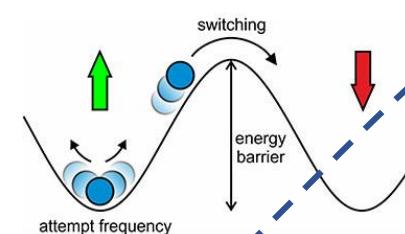
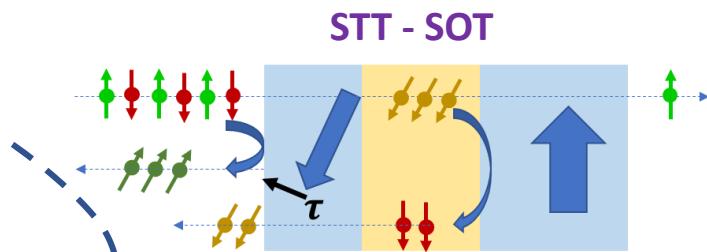


magnetic moment in a cluster and/or on a support

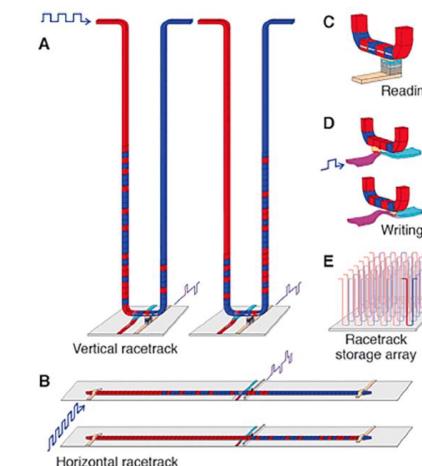


Magnetization easy axis

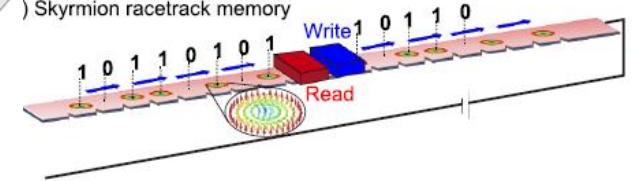
applications



Future



Skymion racetrack memory



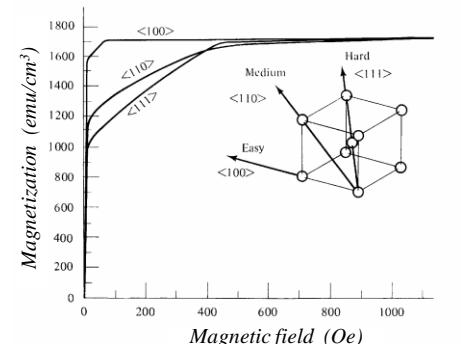
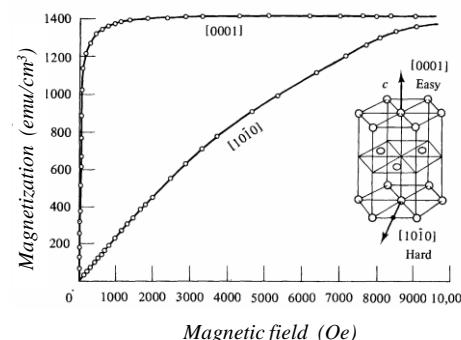
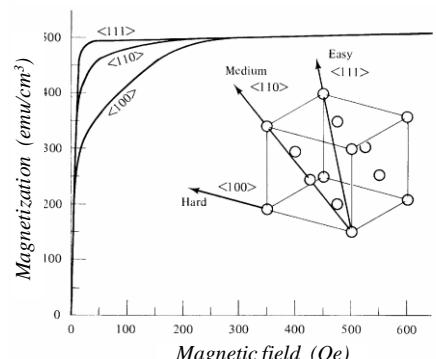
Magnetic anisotropy energy (MAE)

EPFL

Bulk systems: the magnetization curve depends on the direction of the external field

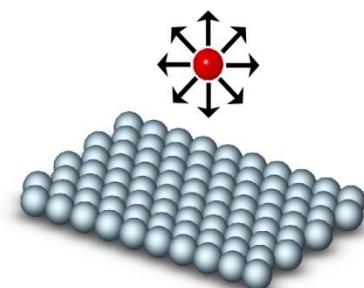
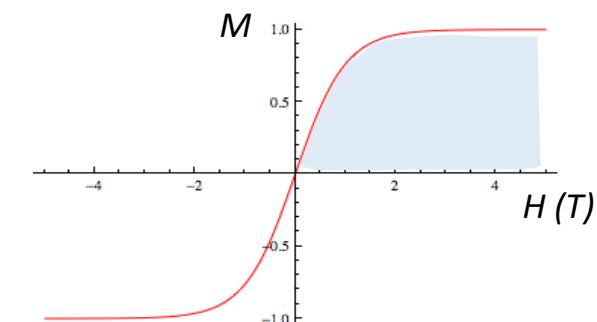
Fe bcc

$$K_1 = 4.8 \times 10^4 \text{ J/m}^3 \\ = 2.4 \text{ } \mu\text{eV/atom}$$



Free-standing atom: the magnetization is spatially isotropic

isotropic:
free magnetic atom

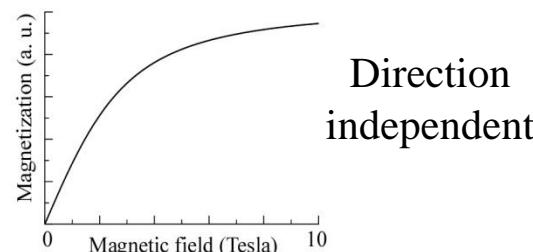


Co hcp
easy axis: (0001)

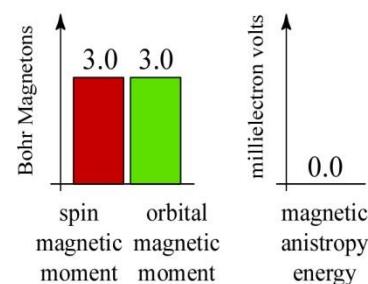
$$K_1 = 4.1 \times 10^5 \text{ J/m}^3 \\ = 45 \text{ } \mu\text{eV/atom}$$

Ni fcc

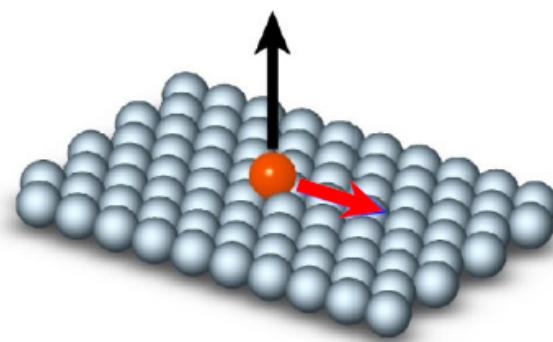
$$K_1 = -5.5 \times 10^3 \text{ J/m}^3 \\ = -0.3 \text{ } \mu\text{eV/atom}$$



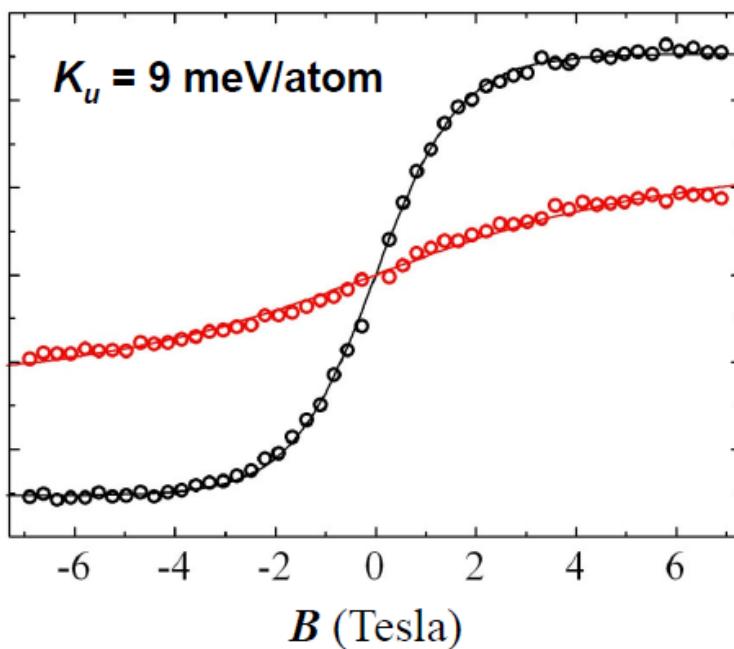
Direction independent



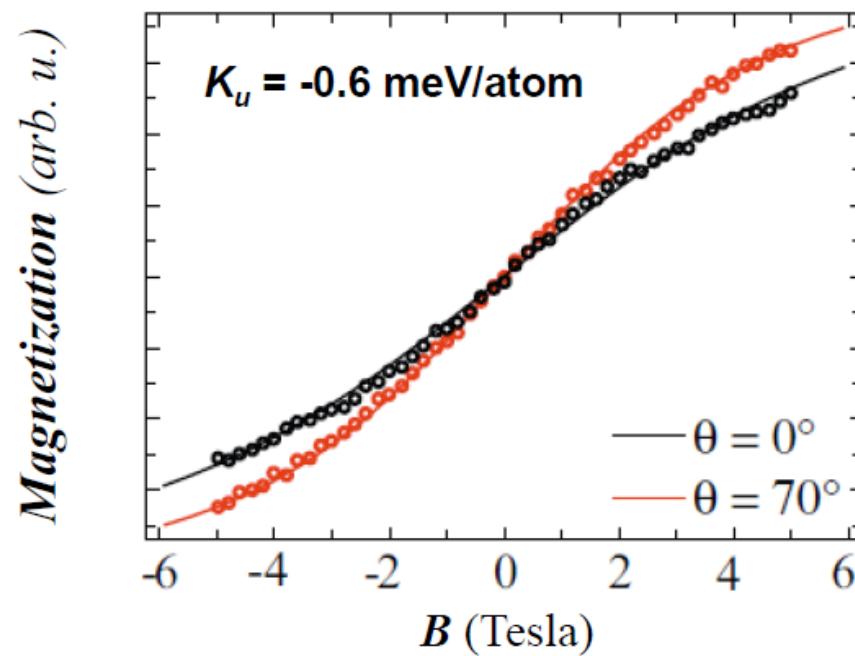
The area MH represents the energy stored in the system. The energy difference between two directions gives the MAE



Co₁/Pt(111)



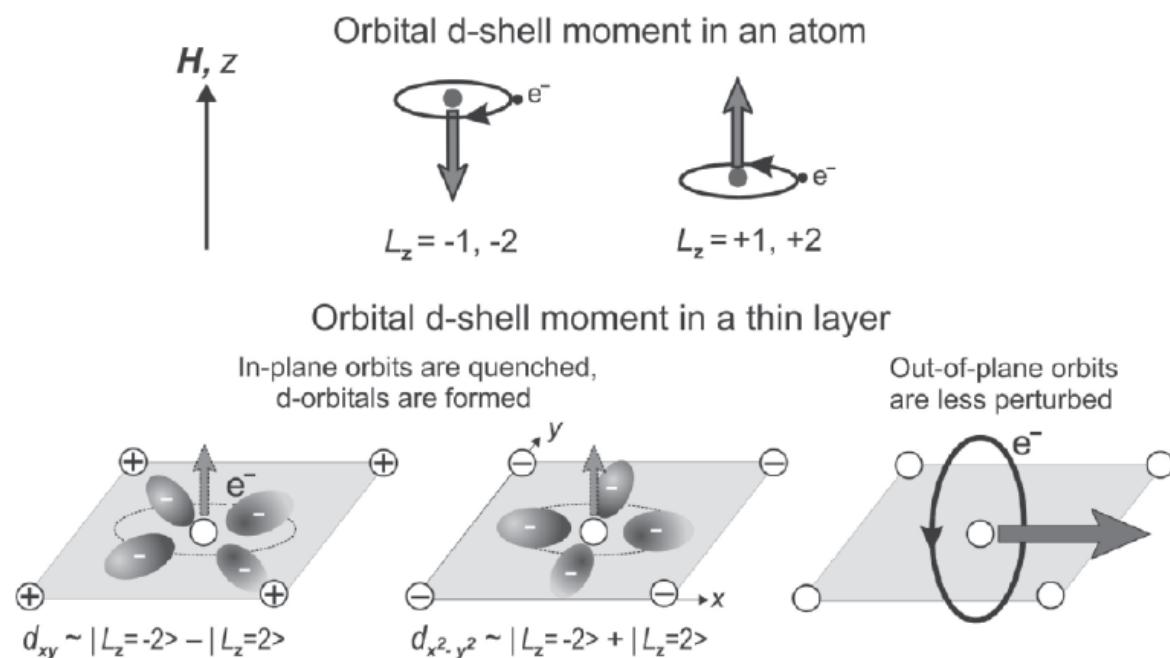
Co₁/Rh(111)



P.Gambardella et al., *Science* **300**, 1130 (2003).

A. Lehnert et al., *Phys. Rev. B* **82**, 094409 (2010)

See exercise: 4.1



Qualitative argument

A strong directional bond (crystal field) generates a reduction in the component of L perpendicular to the bond direction

- d electron in a free atom. Free orbital motion \rightarrow atom with maximum L_z due to Hund's rules

- atom in a plane forming bonds with neighbours atoms .

-a) in-plane orbital motion frozen by bond formation

-b) out-of-plane orbital motion unperturbed by bonds

\rightarrow out-of-plane orbital moment is quenched

\rightarrow in-plane orbital moment stays unquenched

symmetry breaking implies anisotropic orbital moments

-The spin moment S is isotropic.

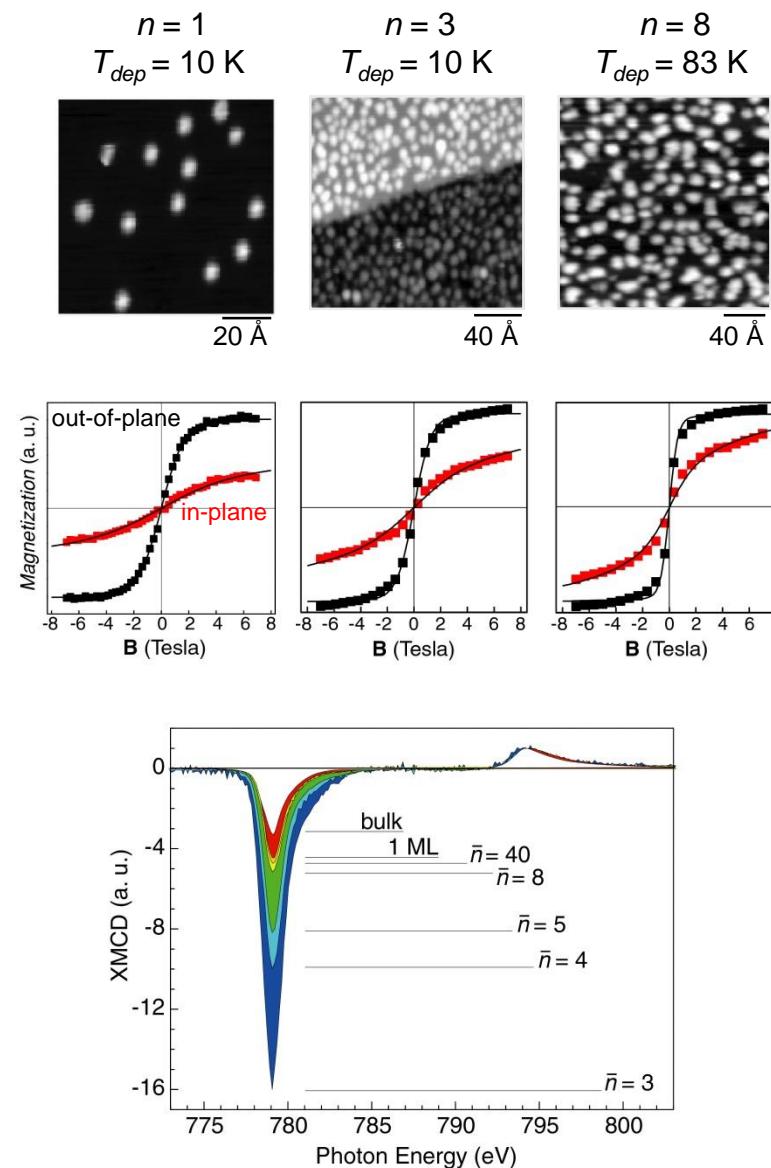
However, **spin-orbit ($\lambda S \cdot L$) locks the spin** along the spatial direction having maximum L

easy axis of magnetization

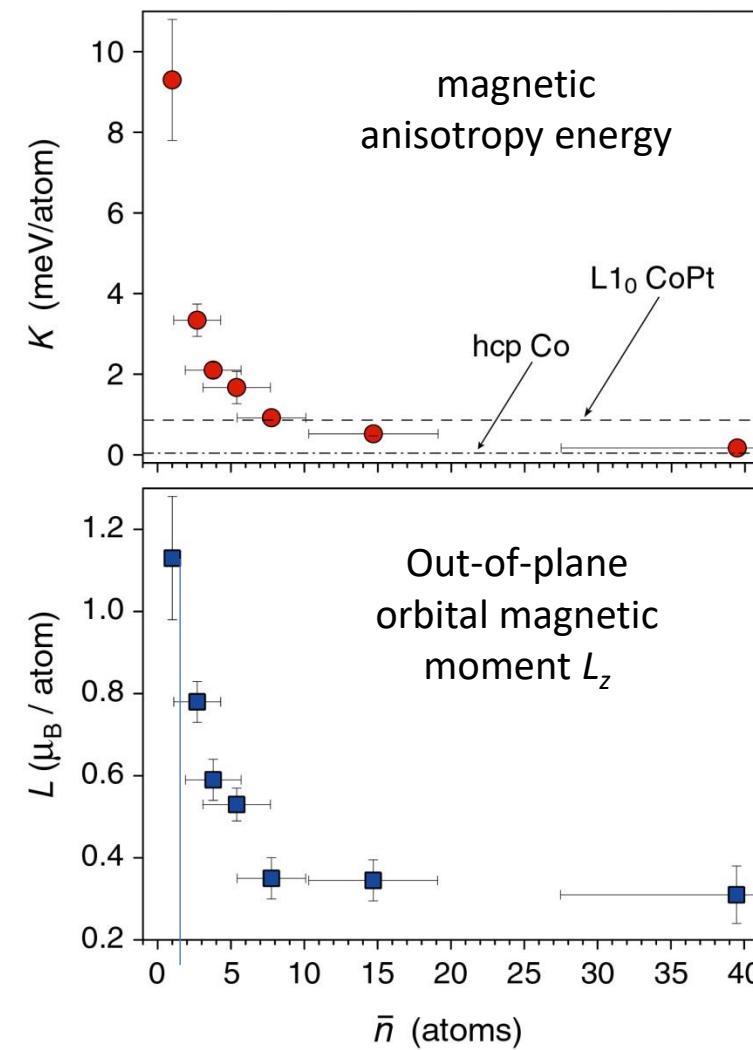
$$\text{Magnetocrystalline anisotropy energy (MCA)} \quad K_{MCA} \approx \lambda S \cdot (L_z - L_{x,y})$$

Correlation between K_{MCA} and out-of-plane L in $\text{Co}_n/\text{Pt}(111)$

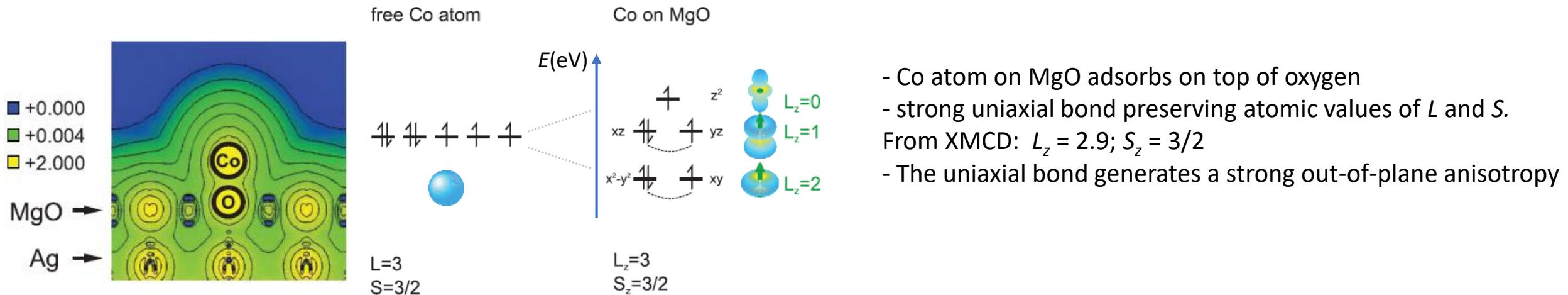
See exercise: 4.2



Co particles on Pt(111) with average size n



Reaching the MCA limit in 3d metal atoms: Co₁/MgO(100)



$$K_{MCA} \approx \lambda \mathbf{S} \cdot (\mathbf{L}_z - \mathbf{L}_{x,y})$$

$$L_x(L_y) = 0$$

$$\langle d_n | L_x | d_{3z^2-r^2} \rangle = 0$$

$$\langle d_{yz} | L_x | d_{x^2-y^2} \rangle = 0$$

$$\langle d_{xz} | L_x | d_{xy} \rangle = 0$$

$$\Delta L = L_z - L_x = 3 = \text{maximum value}$$

$$L_z = 3$$

$L_x d_{xz} = -i d_{xy}$	$L_y d_{xz} = i d_{x^2-y^2}$	$L_z d_{xz} = i d_{yz}$
$L_x d_{yz} = i \sqrt{3} d_{3z^2-r^2}$	$L_y d_{yz} = i d_{xy}$	$L_z d_{yz} = -i d_{xz}$
$+ i d_{x^2-y^2}$		
$L_x d_{xy} = i d_{xz}$	$L_y d_{xy} = -i d_{yz}$	$L_z d_{xy} = -i 2 d_{x^2-y^2}$
$L_x d_{x^2-y^2} = -i d_{yz}$	$L_y d_{x^2-y^2} = -i d_{xz}$	$L_z d_{x^2-y^2} = i 2 d_{xy}$
$L_x d_{3z^2-r^2} = -i \sqrt{3} d_{yz}$	$L_y d_{3z^2-r^2} = i \sqrt{3} d_{xz}$	$L_z d_{3z^2-r^2} = 0$

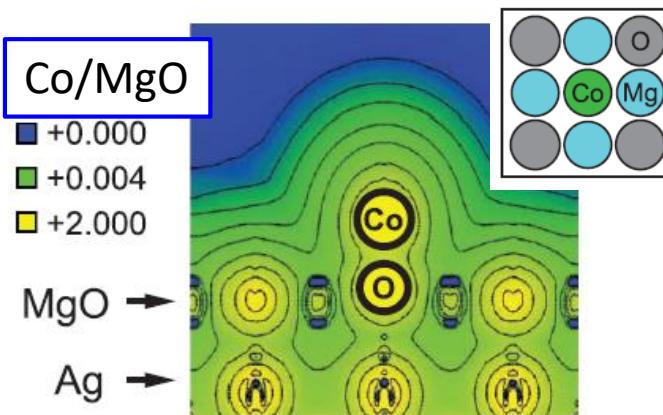
$$| \langle d_n | L_x | d_{3z^2-r^2} \rangle | = 0$$

$$| \langle d_{xy} | L_z | d_{x^2-y^2} \rangle | = 2$$

$$| \langle d_{yz} | L_z | d_{xz} \rangle | = 1$$

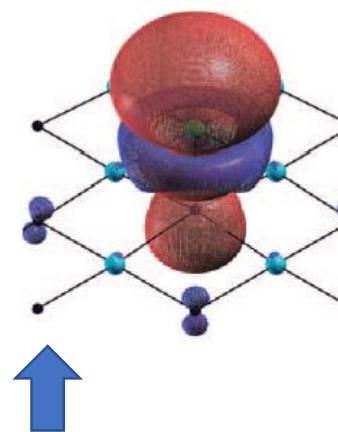
Matrix element are **zero** because d_{xy} and $d_{x^2-y^2}$ are **not degenerate** with d_{yz} and d_{xz}

Charge distribution



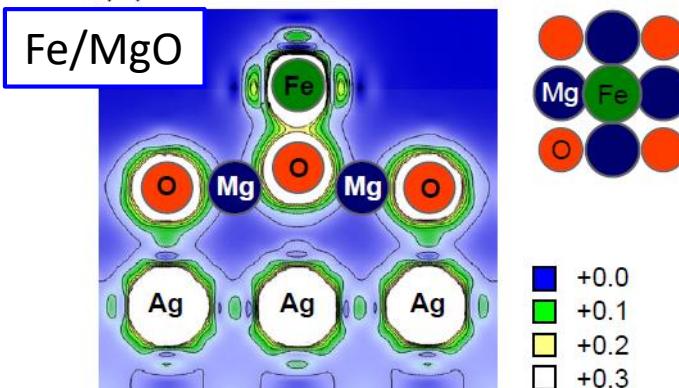
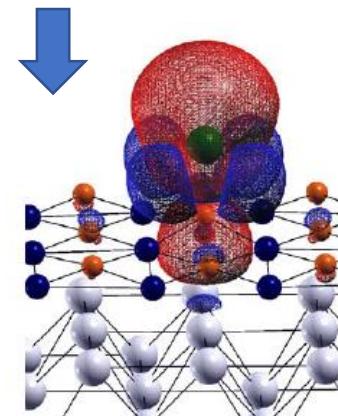
Spin distribution

Majority Minority

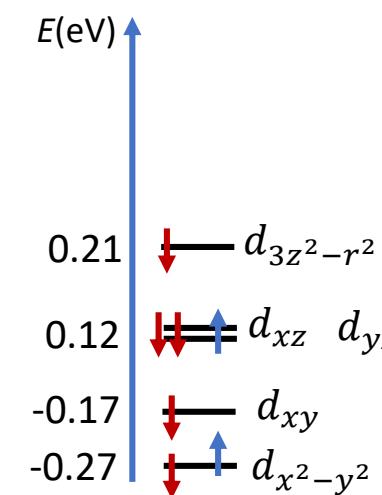


Axial (C_∞)
crystal field

Different interactions with neighbors atoms for Co and Fe



C_{4v}
crystal field

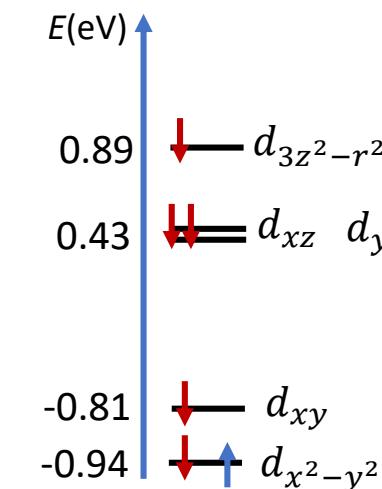


$$V_{ee}: \begin{cases} L_z = 2.9 \\ S_z = 1.3 \end{cases}$$

$$V_{ee} + V_{SO}: \begin{cases} L_z = 2.9 \\ S_z = 1.3 \end{cases}$$

$$L_{x,y} \approx 0$$

$$K_{MCA} \approx 60 \text{ meV}$$



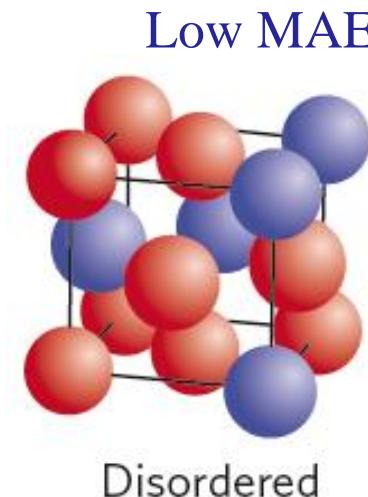
$$V_{ee}: \begin{cases} L_z = 0 \\ S_z = 2 \end{cases}$$

$$V_{ee} + V_{SO}: \begin{cases} L_z = 1.25 \\ S_z = 2 \end{cases}$$

$$L_{x,y} \approx 0$$

$$K_{MCA} \approx 20 \text{ meV}$$

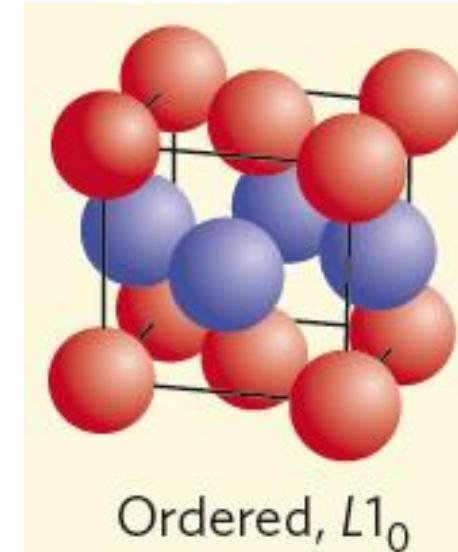
Example: $L1_0$ phase in FePt alloy



● Fe (or Co)
● Pt (or Pd)

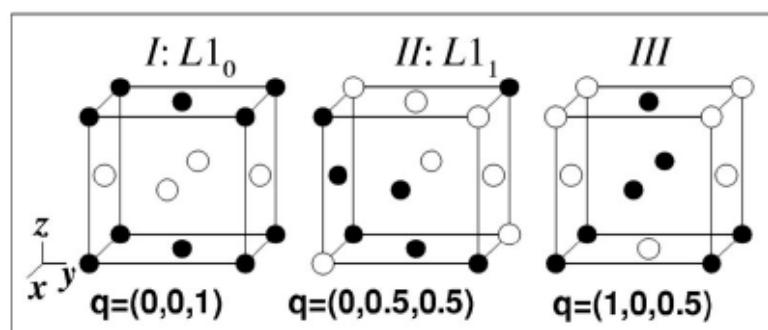
Ordering by annealing to about 600°C

High MAE

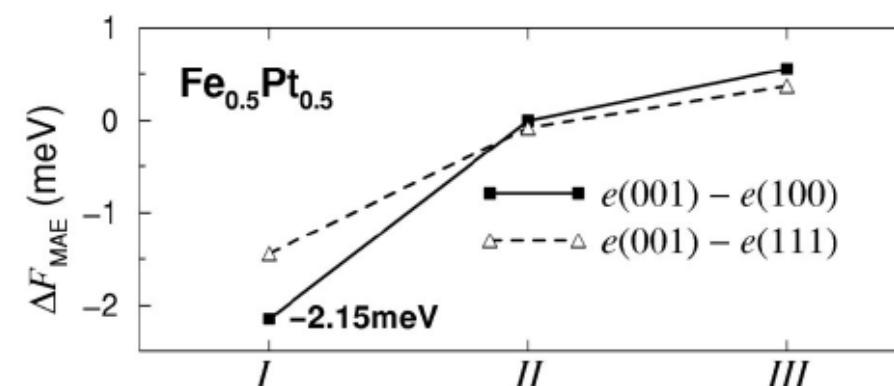


D. Alloyeau et al., Nat Mater. **8**, 940 (2009); Z.R. Day et al. Nano Lett. **1**, 443 (2001); S. Sun *et al.*, Science **287**, 1989 (2000)

S. Ostanin *et al.* J. Appl. Phys. **93**, 453 (2003); S.S.A. Razee *et al.*, Phys. Rev. Lett. **82**, 5369 (1999); J. Lyubina *et al.*, J. Phys.: Condens Matter **17**, 4157 (2005)



CF tuning of the MAE



$$H_{\text{so}} = \zeta \sum_{\mu_1, \mu_2, \sigma_1, \sigma_2} \langle \mu_2, \sigma_2 | L \cdot S | \mu_1, \sigma_1 \rangle \sum_{\mathbf{k}} c_{\mu_2, \sigma_2}^{\dagger}(\mathbf{k}) c_{\mu_1, \sigma_1}(\mathbf{k})$$

$|\mathbf{k}, \mu, \sigma\rangle$ are the Bloch functions with eigenvalues $\varepsilon_{n, \sigma}(\mathbf{k})$
 \mathbf{k} the electron wave vector,
 μ the d orbitals,
 σ the spin.
 c^{\dagger} (c) are creation (annihilation) operators

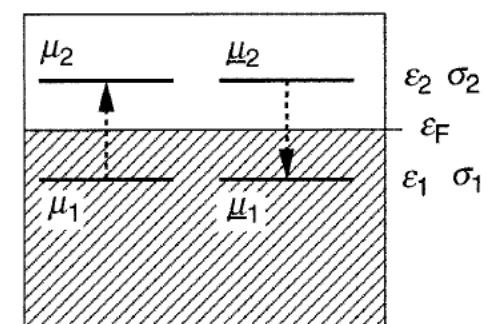
It has to be calculated between occupied $|\text{gr}\rangle$ and unoccupied $|\text{ex}\rangle$ states

H_{so} is a one-electron operator
diagonal in \mathbf{k} (\mathbf{k} is conserved)

The excited states are unoccupied states

$$|\text{ex}\rangle = c_{n_2, \sigma_2}^{\dagger}(\mathbf{k}) c_{n_1, \sigma_1}(\mathbf{k}) |\text{gr}\rangle$$

$$\varepsilon_{n_1, \sigma_1}(\mathbf{k}) < \varepsilon_F < \varepsilon_{n_2, \sigma_2}(\mathbf{k})$$



In 3d metals $H_{\text{so}} \approx 50-100 \text{ meV} \ll \text{band width} \approx 1-5 \text{ eV}$ (due to the Coulomb repulsion and crystal field)

Spin-orbit can be treated as a perturbation:

- first order evaluation: the d orbitals have $L_{x,y,z} = 0 \rightarrow \langle \mu | H_{\text{so}} | \mu \rangle = 0$

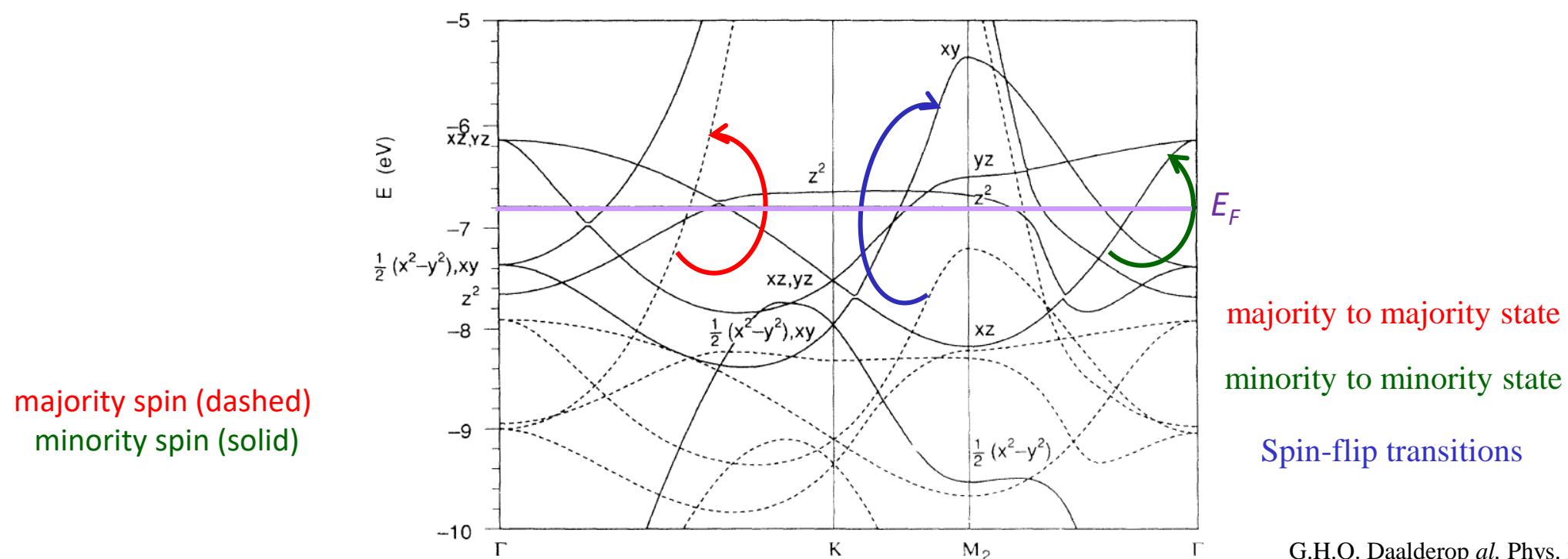
- second order evaluation is $\neq 0$

$$\delta E = \sum_{\text{ex}} \frac{\langle \text{gr} | H_{\text{so}} | \text{ex} \rangle \langle \text{ex} | H_{\text{so}} | \text{gr} \rangle}{E_{\text{gr}} - E_{\text{ex}}}$$

Calculation of the spin-orbit energy

$$\delta E = -\zeta^2 \sum_{\theta} [A(\theta, \uparrow, \uparrow) \langle \underline{\mu}_1, \uparrow | \mathbf{L} \cdot \mathbf{S} | \underline{\mu}_2, \uparrow \rangle \langle \mu_2, \uparrow | \mathbf{L} \cdot \mathbf{S} | \mu_1, \uparrow \rangle \quad \text{red arrow} \rightarrow \text{majority to majority state} \\ + A(\theta, \downarrow, \downarrow) \langle \underline{\mu}_1, \downarrow | \mathbf{L} \cdot \mathbf{S} | \underline{\mu}_2, \downarrow \rangle \langle \mu_2, \downarrow | \mathbf{L} \cdot \mathbf{S} | \mu_1, \downarrow \rangle \quad \text{green arrow} \rightarrow \text{minority to minority state} \\ - A(\theta, \uparrow, \downarrow) \langle \underline{\mu}_1, \uparrow | \mathbf{L} \cdot \mathbf{S} | \underline{\mu}_2, \downarrow \rangle \langle \mu_2, \downarrow | \mathbf{L} \cdot \mathbf{S} | \mu_1, \uparrow \rangle \\ - A(\theta, \downarrow, \uparrow) \langle \underline{\mu}_1, \downarrow | \mathbf{L} \cdot \mathbf{S} | \underline{\mu}_2, \uparrow \rangle \langle \mu_2, \uparrow | \mathbf{L} \cdot \mathbf{S} | \mu_1, \downarrow \rangle] \quad \text{blue arrow} \rightarrow \text{spin-flip transitions}]$$

$$A(\theta, \sigma_1, \sigma_2) \equiv \int_{\varepsilon_1 < \varepsilon_F < \varepsilon_2} \frac{d\varepsilon_1 d\varepsilon_2}{\varepsilon_2 - \varepsilon_1} \sum_{\mathbf{k}} n_{\mu_1, \underline{\mu}_1, \sigma_1}(\mathbf{k}, \varepsilon_1) n_{\mu_2, \underline{\mu}_2, \sigma_2}(\mathbf{k}, \varepsilon_2) \quad \theta = \mu_1, \underline{\mu}_1, \mu_2, \underline{\mu}_2$$



Magnetocrystalline anisotropy energy (K_{mc})

$$\delta E \approx -\frac{1}{4}\zeta \mathbf{S} \cdot (\mathbf{L}^\downarrow - \mathbf{L}^\uparrow) + \frac{\zeta^2}{\Delta E_{exc}} \left[\frac{21}{2} \mathbf{S} \cdot \mathbf{T} + 2(S_z L_z)^2 \right]$$

Majority to majority
Minority to minority

Spin-flip transitions

ΔE_{exc} is the exchange splitting between majority and minority states

$$\mathbf{T} = \hat{\mathbf{S}} - 3\hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \mathbf{S})$$

Magnetic dipole \rightarrow Anisotropy of the spin moment (for ex. due to an anisotropy of the electron charge distribution)

$$K_{MCA} = \delta E(H \parallel z) - \delta E(H \parallel x, y)$$

K_{MCA} = energy difference between two magnetization directions

If majority states are completely full ($L^\uparrow = 0$)

$$K_{MCA} \approx \frac{\zeta}{4} \mathbf{S} \cdot \Delta \mathbf{L}_{z,x(y)} + O\left(\frac{\zeta^2}{\Delta E_{exc}}\right)$$

P. Bruno, PRB **39**, 865 (1989);
G. van der Laan, JPCM **10**, 3239 (1998).

Frequently

$$K_{MCA} = \alpha \frac{\zeta}{4} \mathbf{S} \cdot \Delta \mathbf{L}$$

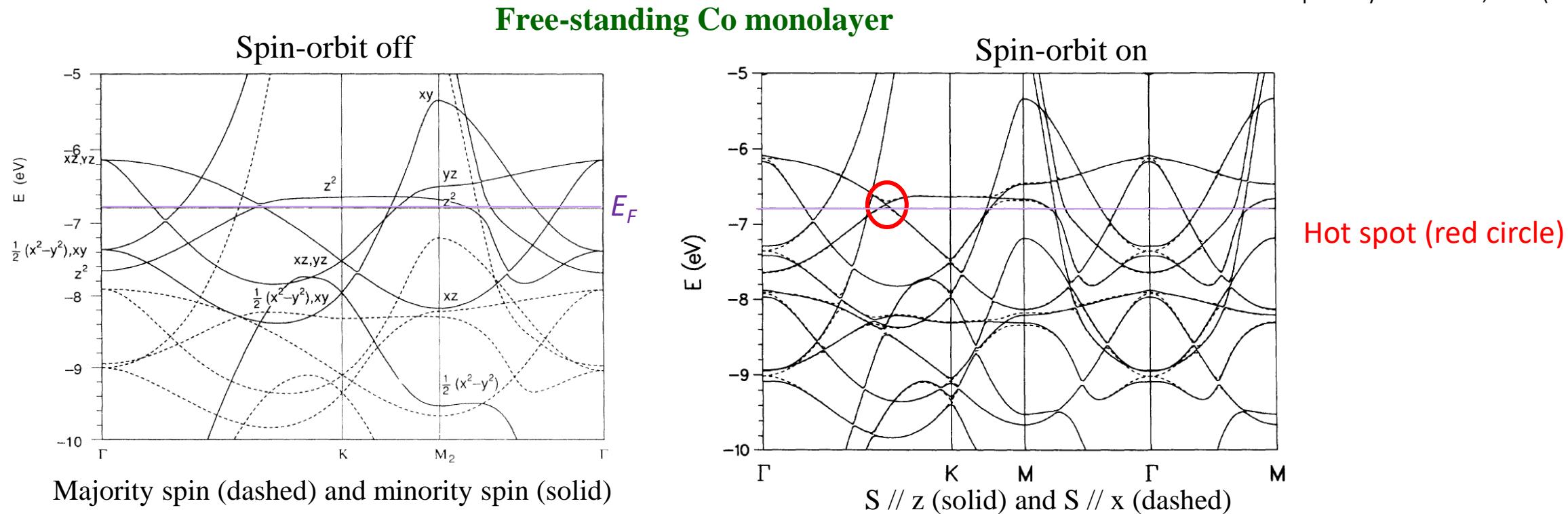
$$\alpha \approx 0.1 - 0.25$$

J. Stöhr, J. Magn. Magn. Mater **200**, 470 (1999);

In thin film and nanostructures, the factor α is necessary to find a good agreement between XMCD and other magnetometer measurements. Discrepancy probably due to spin-flip term and not perfectly spin-split bands

Magnetocrystalline anisotropy vs. band structure

G.H.O. Daalderop *et al.* Phys. Rev. B 50, 9989 (1994)



Magnetization easy axis = axis corresponding to the lowest energy (x in the present case)

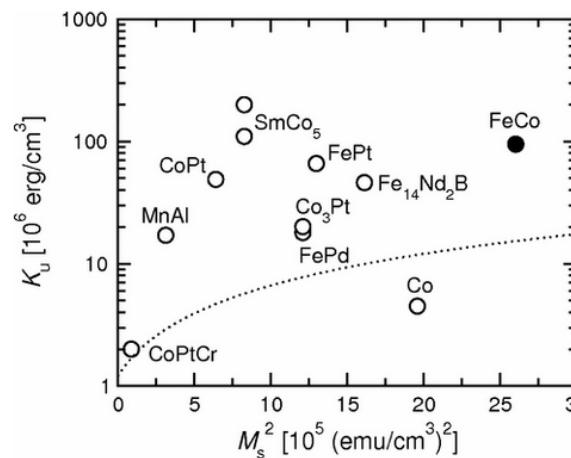
Hot spot:
Degenerate states close to E_F
can give huge contributions
to the MAE

$H \parallel z$

$H \parallel x$

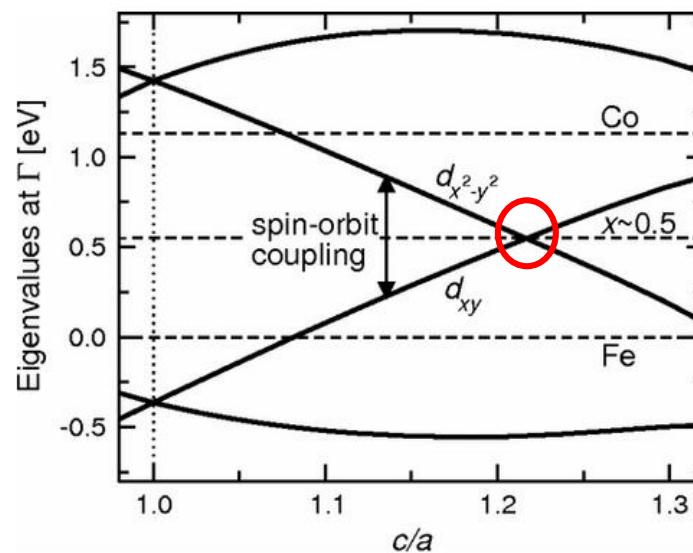
Spin-orbit splits the degenerate states in such a way that one state is shifted below E_F and the second one is shifted above E_F when $H \parallel x$

Ex.: FeCo bulk

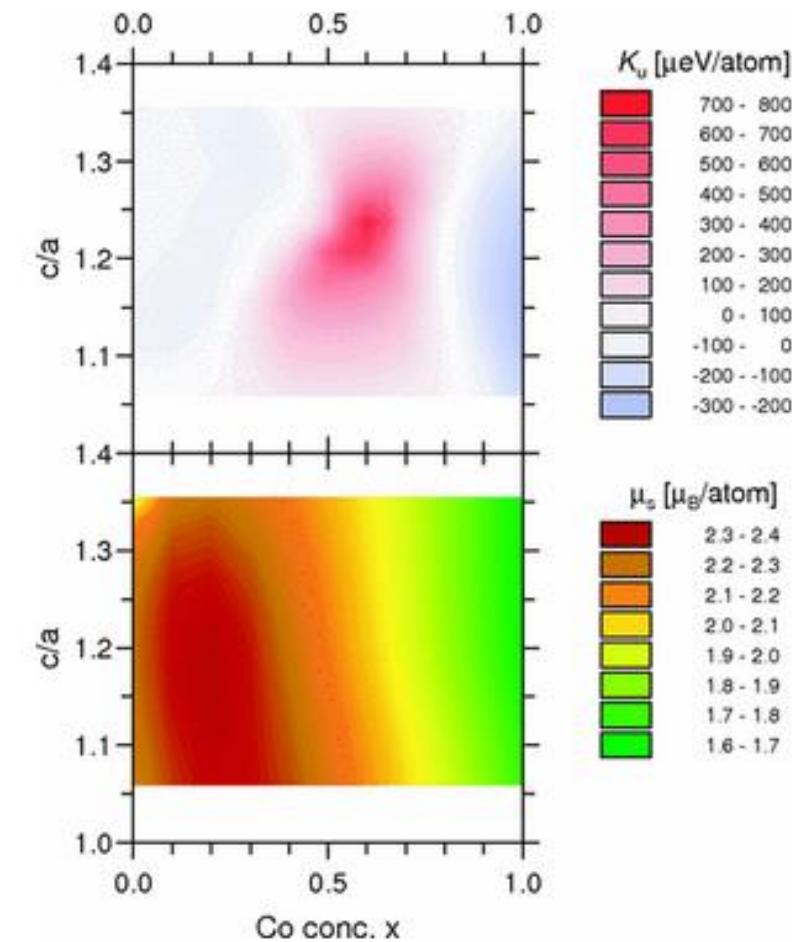


FeCo bcc $\rightarrow K_{MCA} = 1-2 \mu\text{eV/atom}$
FeCo bct $\rightarrow K_{MCA} = 0.8 \text{ meV/atom}$

Enhanced K_{MCA} for composition and c/a distortion giving degenerate $d_{x^2-y^2}$ and d_{xy} states.



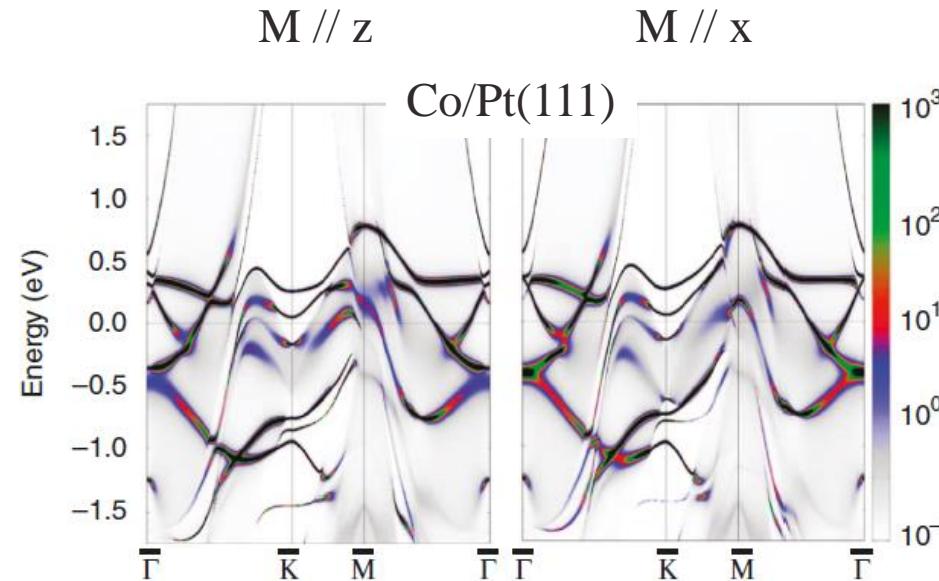
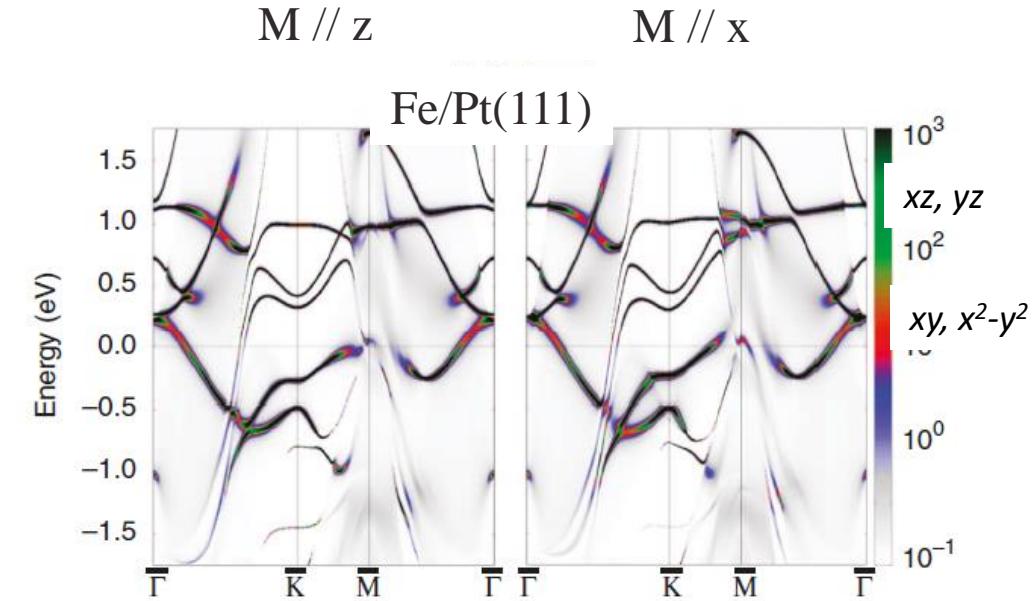
Spin orbit split these two degenerate states: maximum K_{mca} for $c/a = 1.2$ and $\text{Fe}_{0.5}\text{Co}_{0.5}$



Calculated minority d-orbitals eigenvalues at the Γ point as a function of c/a ratio.

The Fermi energies of Fe, Co, and $\text{Fe}_{0.5}\text{Co}_{0.5}$ are indicated by dashed lines

Ex.: FeCo monolayer on Pt(111)

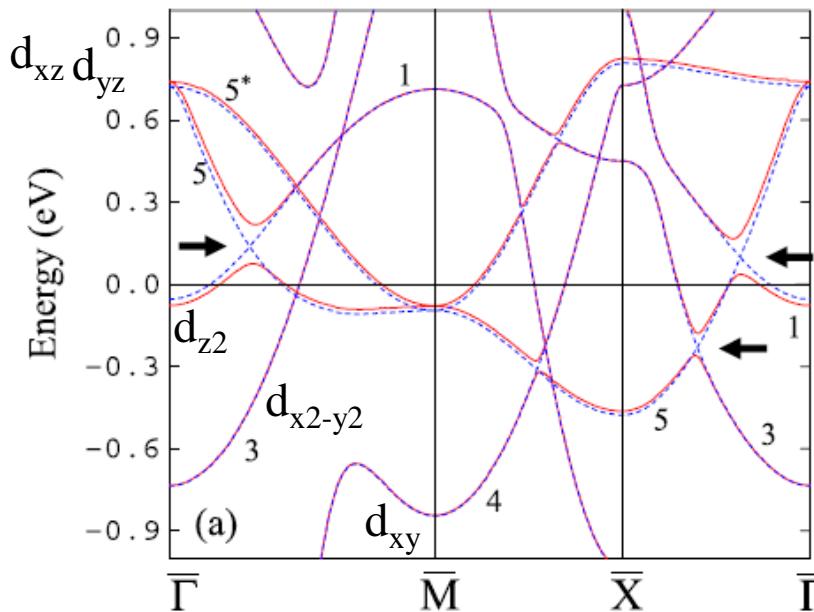


1) Degenerate d_{xy} and $d_{x^2-y^2}$ orbitals at Fermi level for $Fe_{75}Co_{25}$

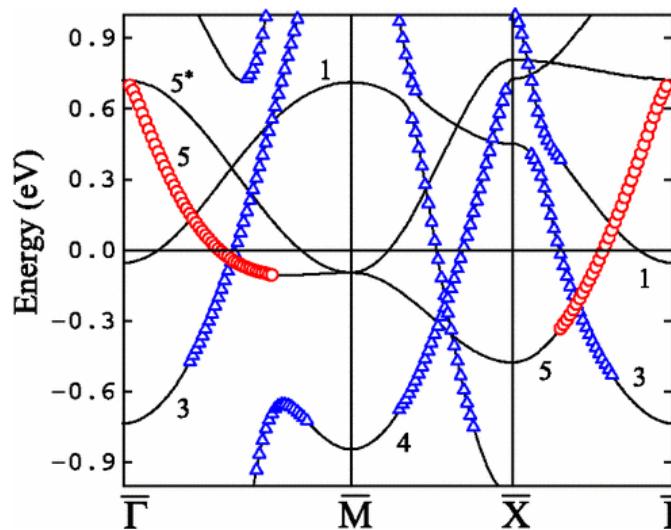
2) Splitting of the d_{xy} and $d_{x^2-y^2}$ orbitals
-> gain in energy when M // z
-> z is the easy axis with large K_{mca}



Electric field control of K_{MCA}



minority-spin band for an Fe(001) monolayer in an external electric field E_z :
 $E_z = 0$ (dotted lines)
 $E_z = 1 \text{ eV}/\text{\AA}$ (solid lines).
 Arrows indicate band gaps induced by the electric field.

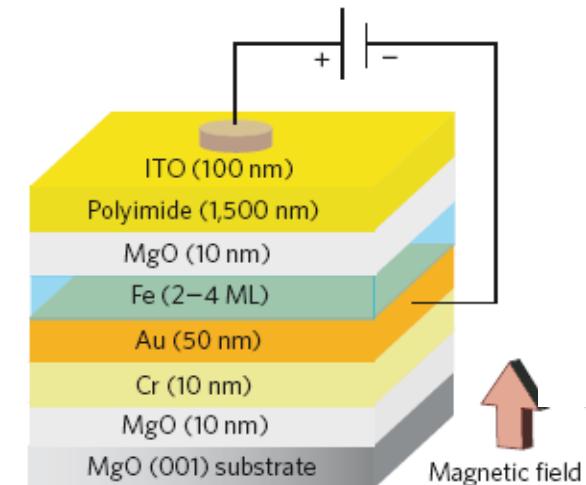
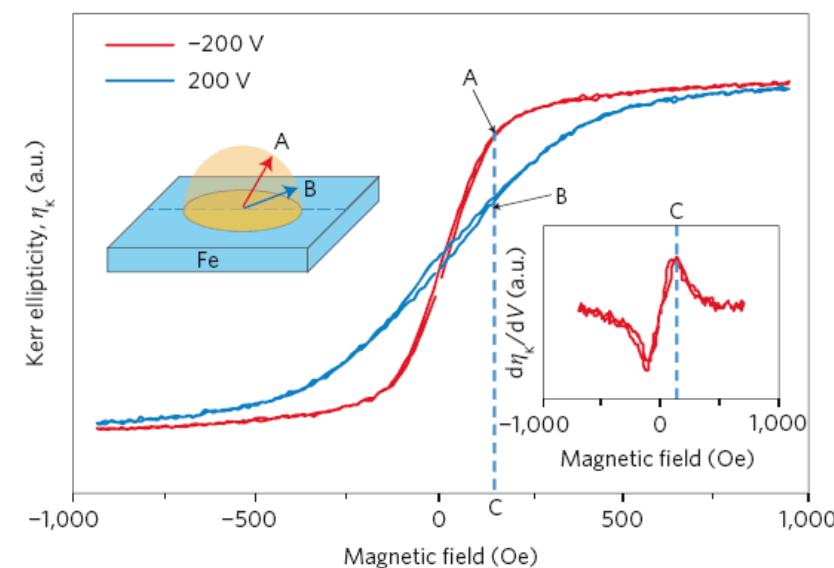


Electric field $\rightarrow Y_1^0$ symmetry

$\langle l'm'|Y_1^0|lm\rangle \neq 0$
 when $l' = l+1$ and $m' = m$

small components of the p orbitals:
 circles (p_z) and triangles ($p_{x,y}$)

Mixing of p and d states opens the gaps



$$\Delta E_{\text{so}} = \sum_{qss'} \Delta E_q^{ss'} = \sum_{qss'} \{E_q^{ss'}(\hat{n}_1) - E_q^{ss'}(\hat{n}_2)\}$$

The MAE is written as a sum over **atomic species q** , and as a double sum over the spin indices, s (occupied), and s' (unoccupied)

$$E_q^{ss'}(\hat{n}) = - \sum_{\mathbf{k}ij} \sum_{q'} \sum_{\{m\}} n_{\mathbf{k}is, qm, q'm'} n_{\mathbf{k}js', q'm'', qm'''} \frac{\langle qms | \mathcal{H}_{\text{so}}(\hat{n}) | qm'''s' \rangle \langle q'm''s' | \mathcal{H}_{\text{so}}(\hat{n}) | q'm's \rangle}{\epsilon_{\mathbf{k}j} - \epsilon_{\mathbf{k}i}}$$

sum over all \mathbf{k} points in the Brillouin zone, all occupied states i , all unoccupied states j , all species q' and magnetic quantum numbers m

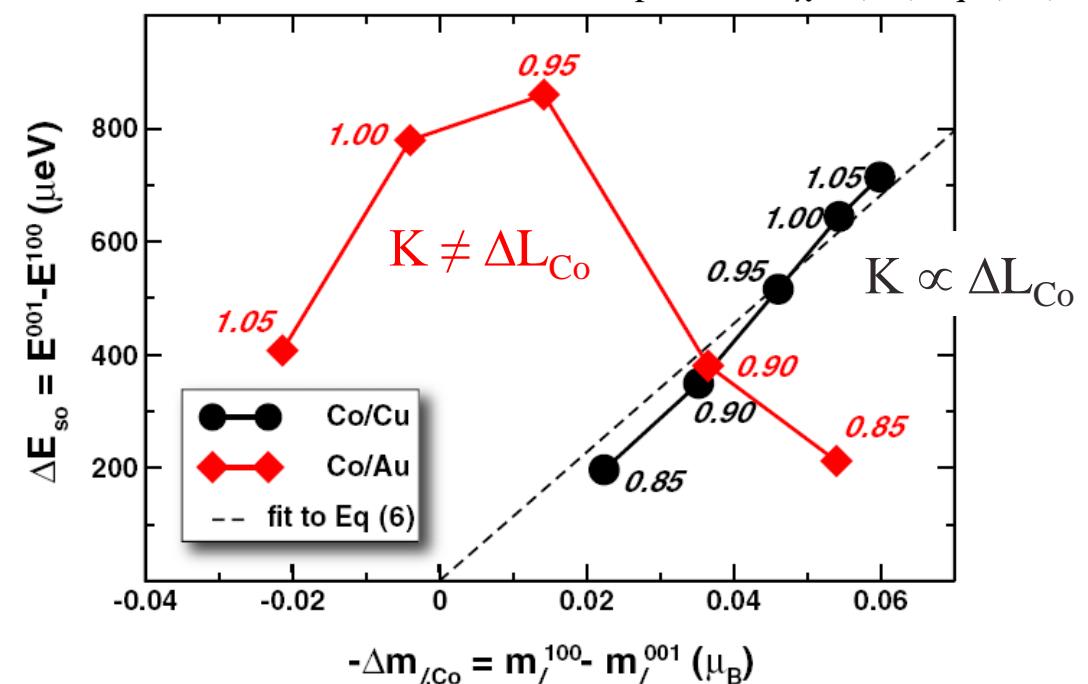
sum over all sites gives off-site contributions ($q \neq q'$) through the spin-orbit scattering (or coupling) at other sites.

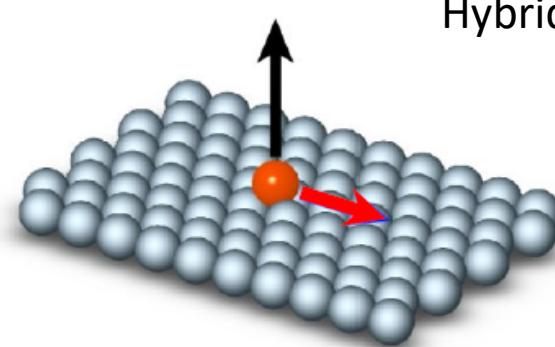
Au is $5d^{10} 6s^1 \rightarrow$ negligible S and $L \rightarrow$

- a) S and L can be not zero due to orbital hybridization
- b) very high spin-orbit constant $\zeta \approx 600$ meV

The magnetization easy axis does not always coincide with the largest orbital moment

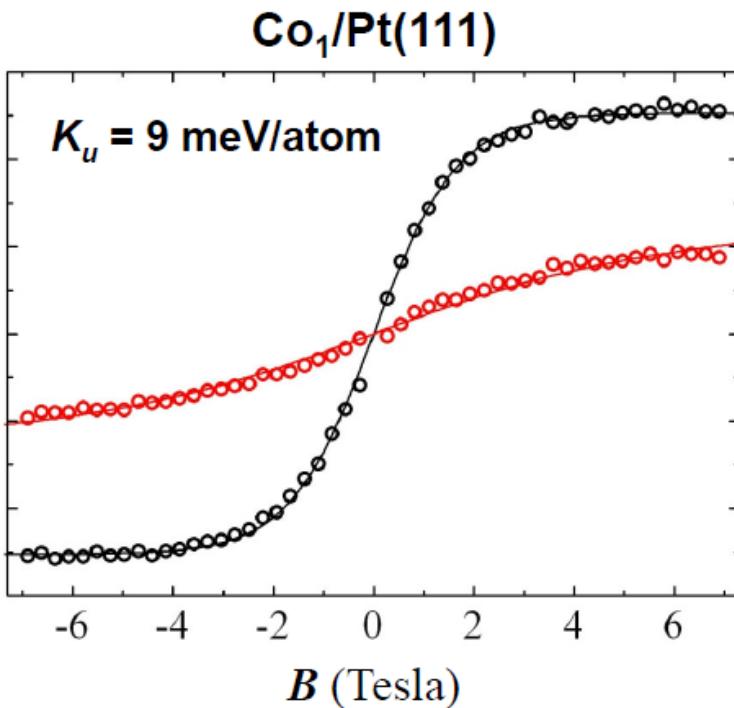
Calculation as a function of the deformation parameter $\chi = (c/a)/\sqrt{8/3}$



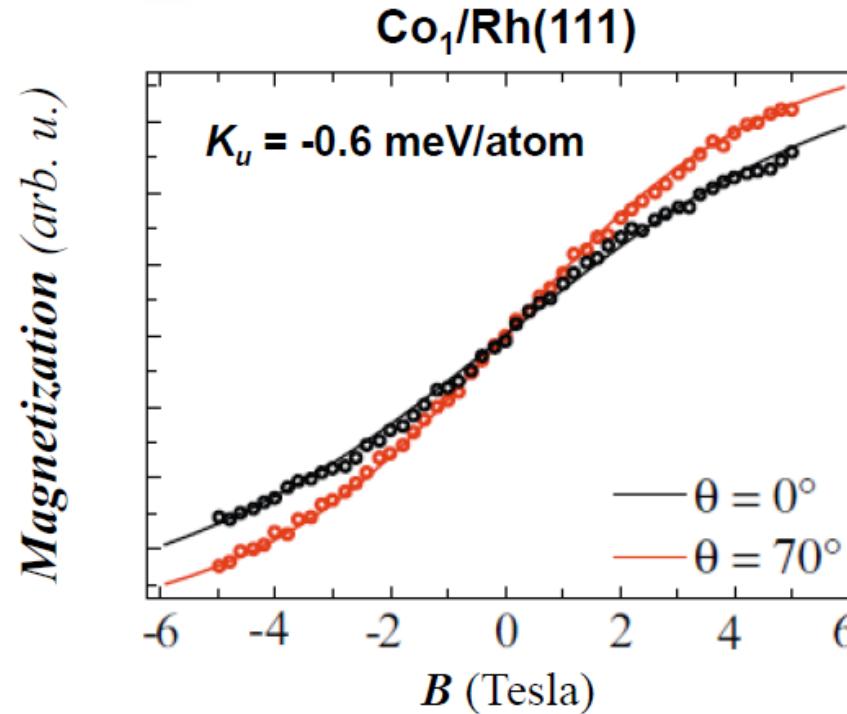


Hybridization with the substrate defines the MAE

Out-of-plane easy axis



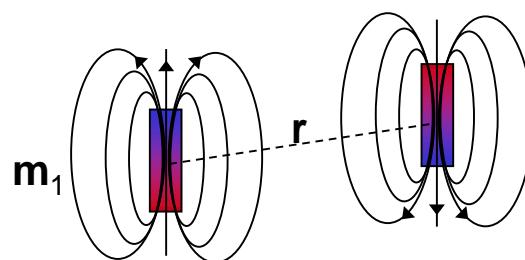
in-plane easy axis



P.Gambardella et al., *Science* **300**, 1130 (2003).

A. Lehnert et al., *Phys. Rev. B* **82**, 094409 (2010)

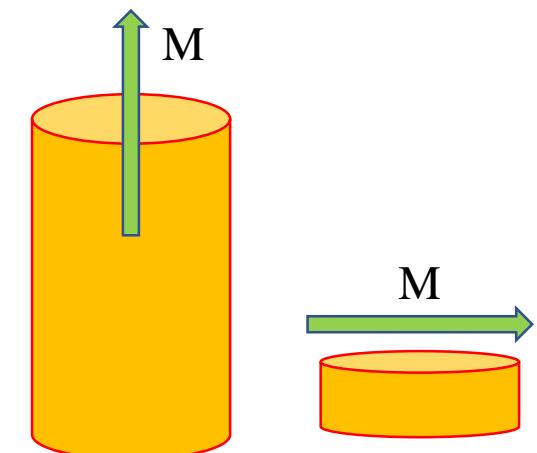
Long range interaction between magnetic moments



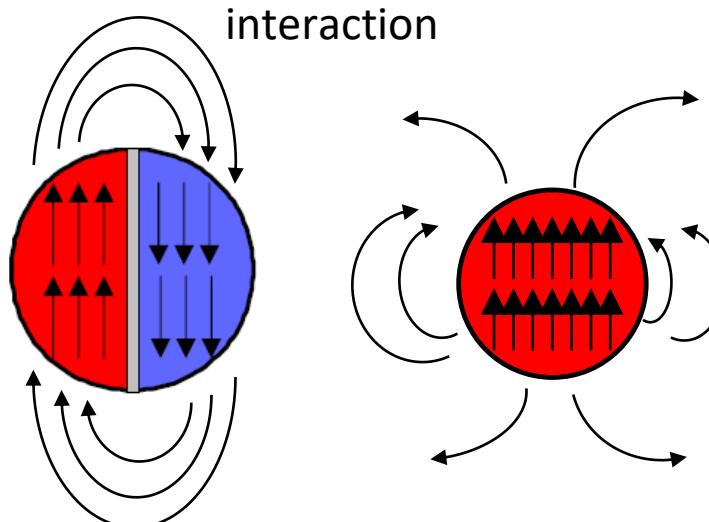
$$H_{dip} = \frac{\mathbf{m}_1 \cdot \mathbf{m}_2}{r^3} - 3 \frac{(\mathbf{m}_1 \cdot \mathbf{r})(\mathbf{m}_2 \cdot \mathbf{r})}{r^5}$$

\mathbf{m}_1 and \mathbf{m}_2 : magnetic moments of two atoms in a particle or moments of two particles

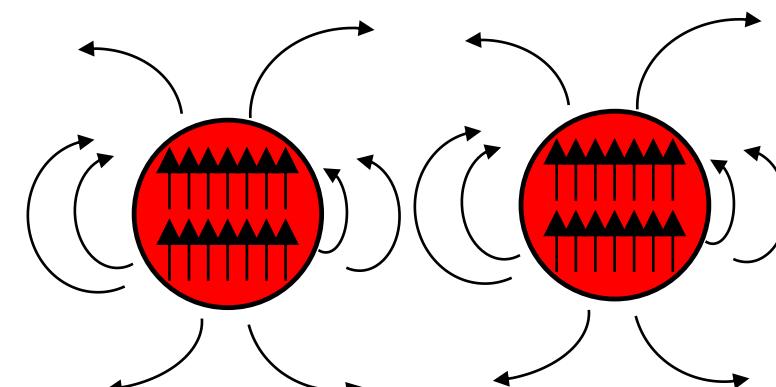
Magnetization orientation



Domain formation:
competition between exchange and dipolar interaction



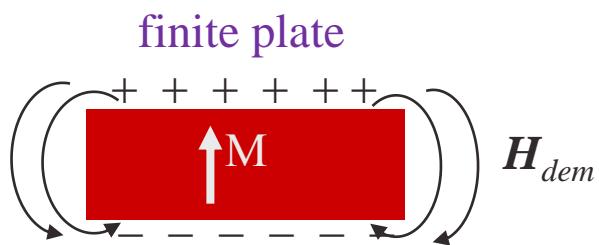
Interaction between close particles



Demagnetizing field: shape anisotropy

Infinite plate

poles only at very far ends ->
no magnetic field outside the plate $H_{dem} \approx 0$



poles at the two faces -> $H_{dem} \neq 0$

H_{dem} is the demagnetizing field

$$E_{dip} = -\frac{\mu_0}{2} \int \mathbf{M} \cdot \mathbf{H}_{dem} dV$$

$$\mathbf{H}_{dem} = -\mathbf{D}\mathbf{M}$$

Sphere:

$$D = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

$$E_{x,y,z} = \frac{\mu_0}{6} M^2$$

∞ -Cylinder:

$$D = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$E_{x,y} = \frac{\mu_0}{4} M^2 \quad E_z = 0$$

∞ -Plane (thin film):

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{x,y} = 0 \quad E_z = \frac{\mu_0}{2} M^2$$

Shape anisotropy:

the shape determines

the magnetization easy axis.

It is proportional to the volume

H_{dem} forces \mathbf{M} along the longer side of the nanostructure:

Sphere $\rightarrow \mathbf{M}$ isotropic

Cylinder $\rightarrow \mathbf{M} //$ cylinder axis

Disk $\rightarrow \mathbf{M} //$ disk surface

The magnetic anisotropy energy (MAE) is the sum of MCA and shape

Magnetic anisotropy energy (MAE)

$$K_{MAE} = K_{MCA} + K_{shape}$$

$$K_{MAE}(\theta) = K \sin^2 \theta = -K \cos^2 \theta$$

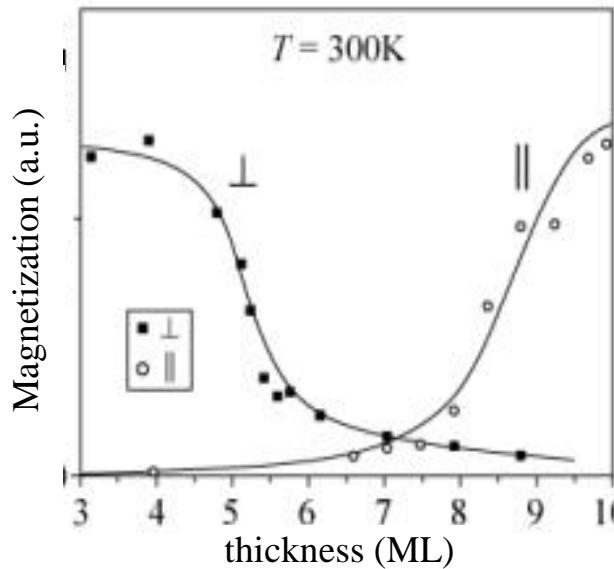
Empirical relationship with $\theta = 0$ giving the easy axis direction of magnetization

Note that MCA can have more than one source:

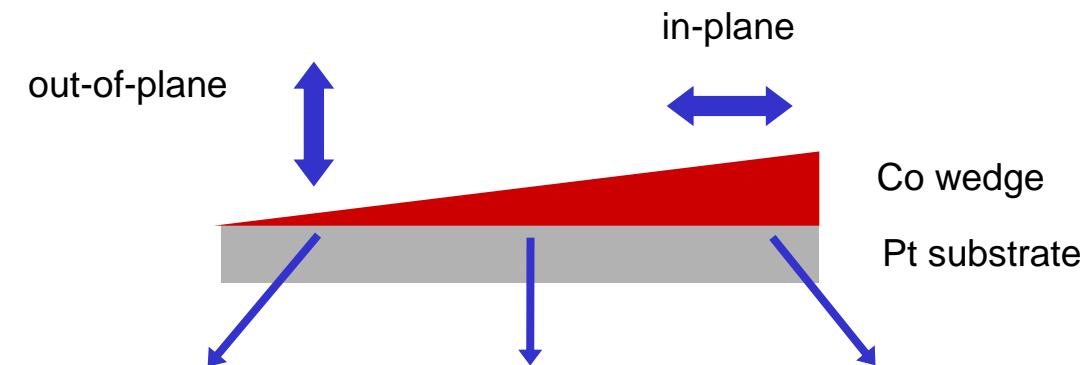
- film crystal structure,
- interaction with a supporting substrate,
- interaction with a capping layer,
- strain
-

Co/Pt(111)

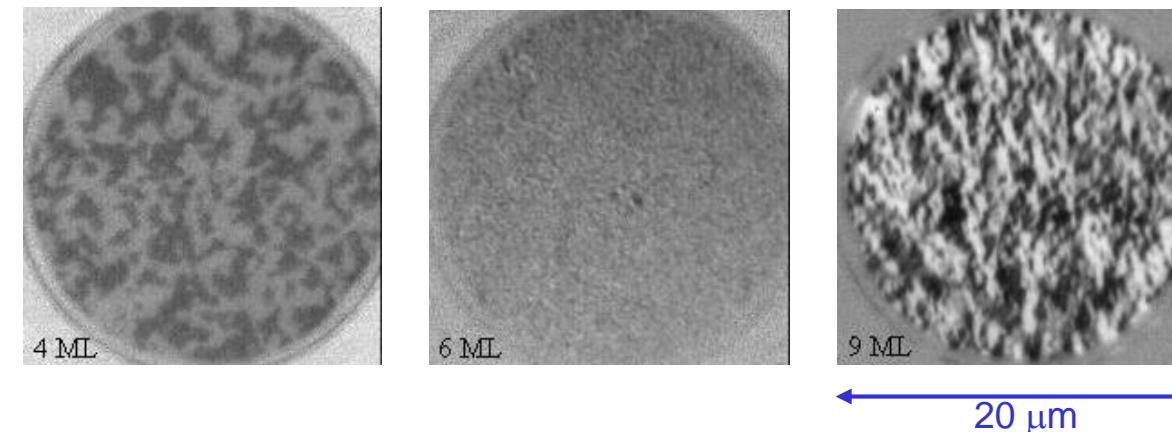
See exercise: 4.3



Easy axis defined by the competition between MCA (hybridization with substrate) and shape anisotropy



Orientation and shape of Co magnetic domains



Magnetic domains

The magnetic configurations are determined by the competition, at a local scale, of four different energies:
Zeeman, **exchange**, **magnetocrystalline anisotropy**, and **dipolar coupling**.

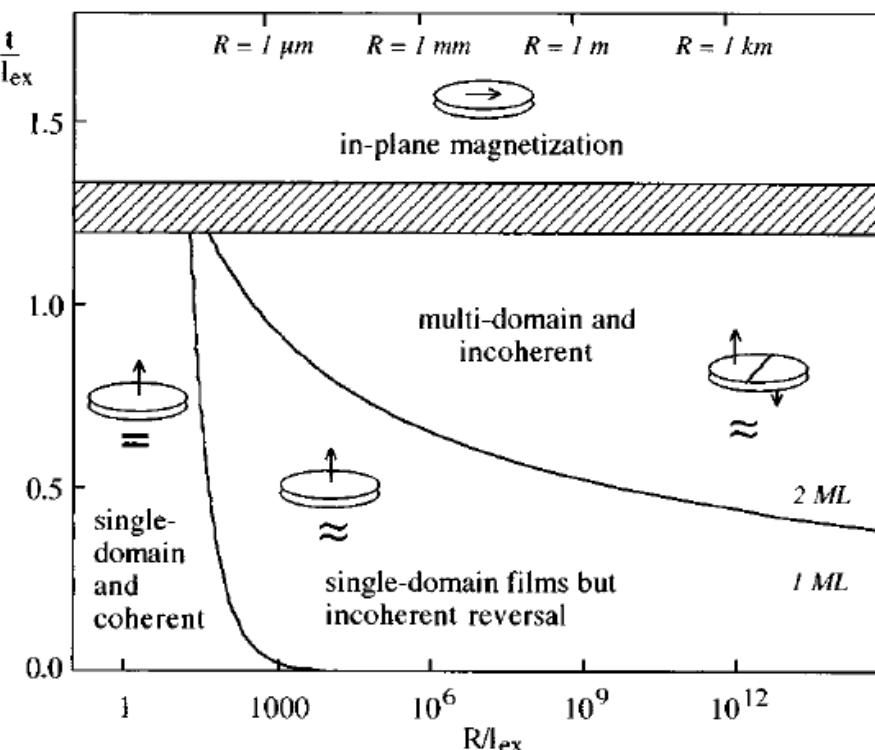
$$E = -\mu_0 \mu H \sum_i \mathbf{m}_i - J \sum_{\langle i,j \rangle} \mathbf{m}_i \cdot \mathbf{m}_j - \sum_i k_i (\mathbf{m}_i \cdot \mathbf{e}_i)^2 - \frac{\mu_0 \mu^2}{8\pi} \sum_{i,j \neq i} \left[\frac{3(\mathbf{m}_i \cdot \mathbf{r}_{ij})(\mathbf{m}_j \cdot \mathbf{r}_{ij})}{r_{ij}^5} - \frac{\mathbf{m}_i \mathbf{m}_j}{r_{ij}^3} \right],$$

exchange, magnetocrystalline energy \rightarrow short range
dipolar energy \rightarrow long range

Ex.: Magnetic phase diagram for ultrathin films with perpendicular anisotropy ($l_{ex} = 2\text{nm}$)

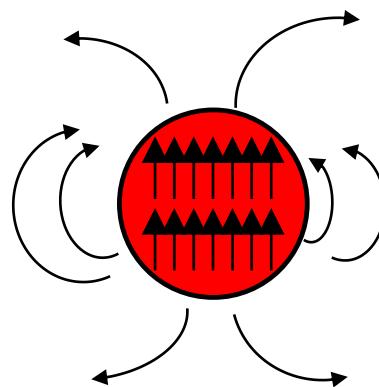
$$l_{ex} = \pi \sqrt{\frac{2A}{\mu_0 M^2}}$$

$$A = 2JS^2/a \text{ is the stiffness}$$

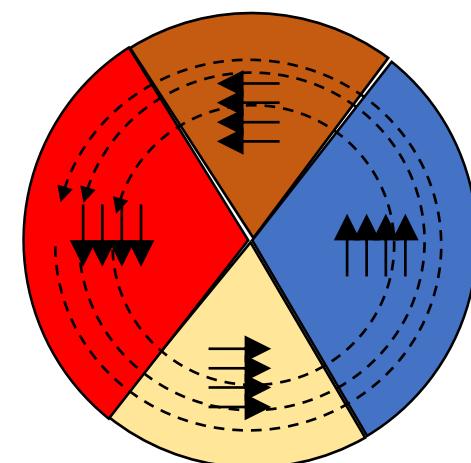


In-plane magnetized particles

Increasing the particle size, domain formation minimizes the magneto-static energy due to the dipolar field



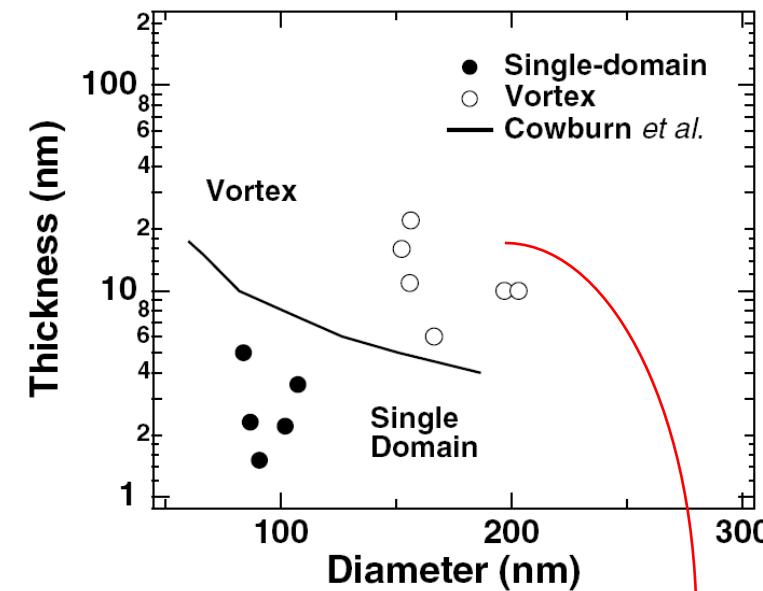
Flux lines extend outside the particle



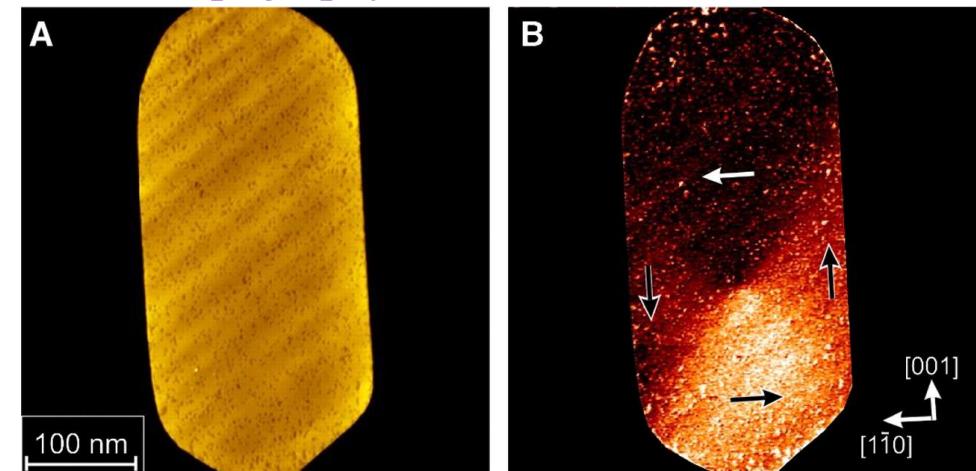
Flux lines are confined inside the particle

magnetic domain pattern of a 8 nm high Fe particle grown on W(110)

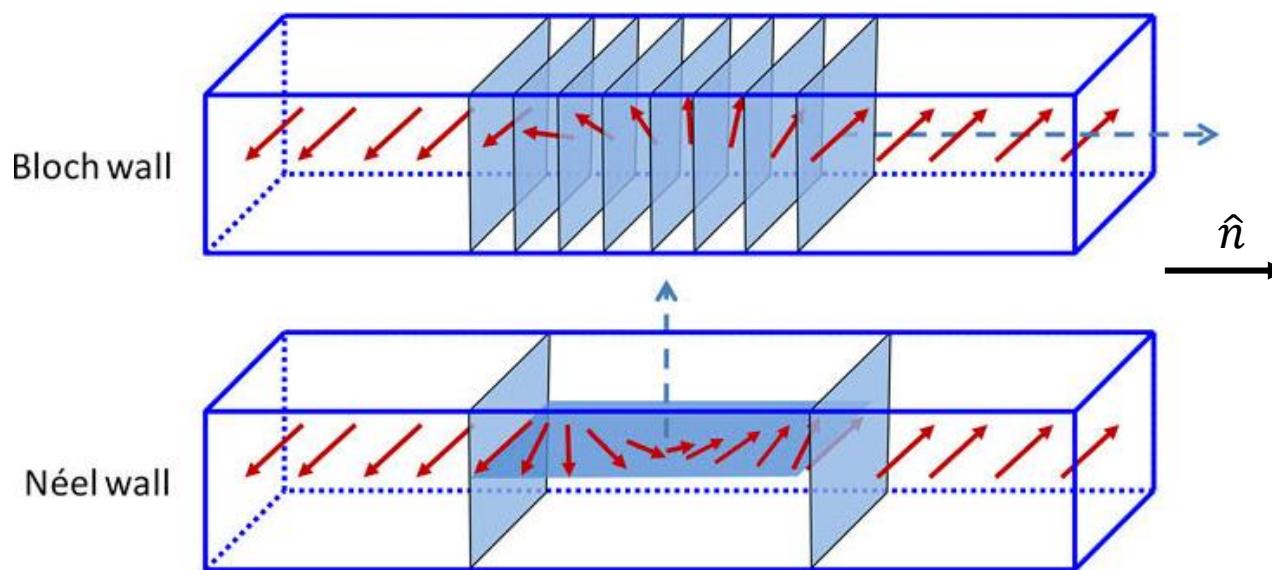
Magnetic phase diagram for ultrathin particles with in-plane anisotropy (Fe/W(001))



Topography

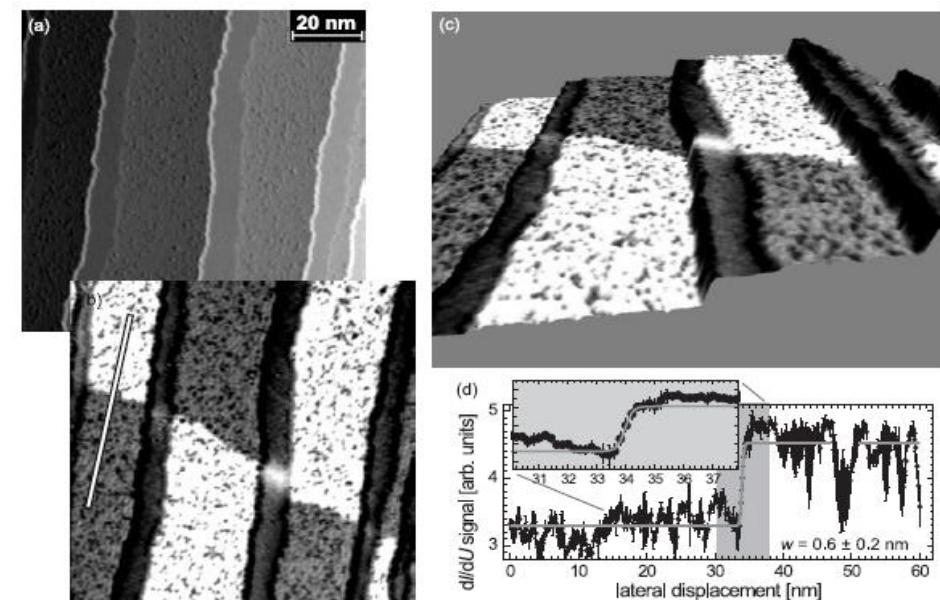


In a **Bloch domain wall**, the magnetization rotates about the normal \hat{n} of the domain wall

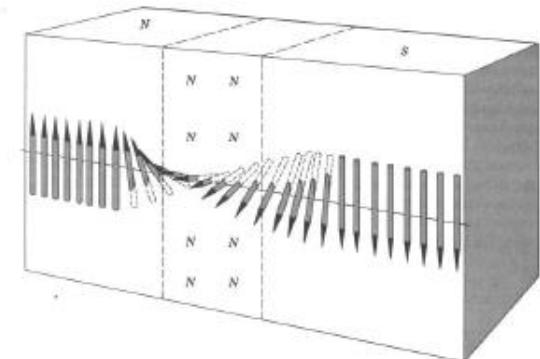


In a **Néel domain wall**, the magnetization rotates about a line that is orthogonal to the normal \hat{n} of the domain wall.

Ex.: SP-STM of 1.3 monolayers Fe / stepped W(110)



Bloch wall



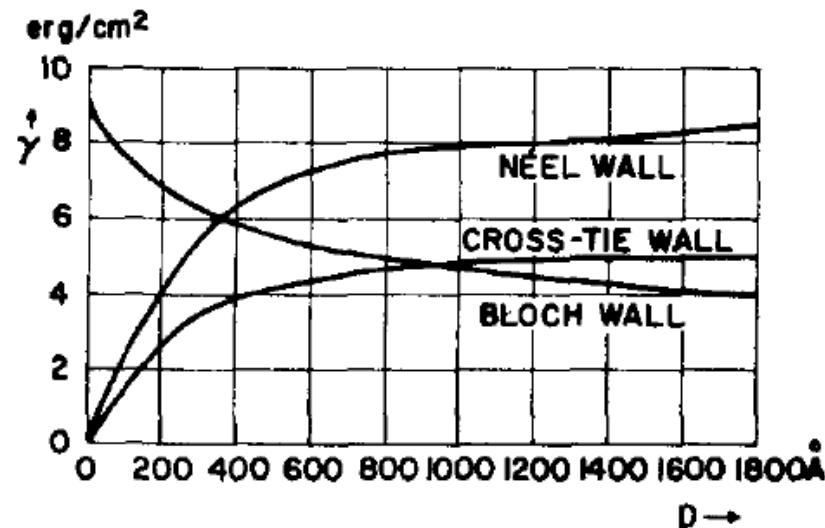


FIG. 1. Energy per unit area of a Bloch wall, a Néel wall and a cross-tie wall as a function of the film thickness [$A = 10^{-6}$ ergs/cm, $M_s = 800$ G, and $K = 1000$ ergs/cm 3].

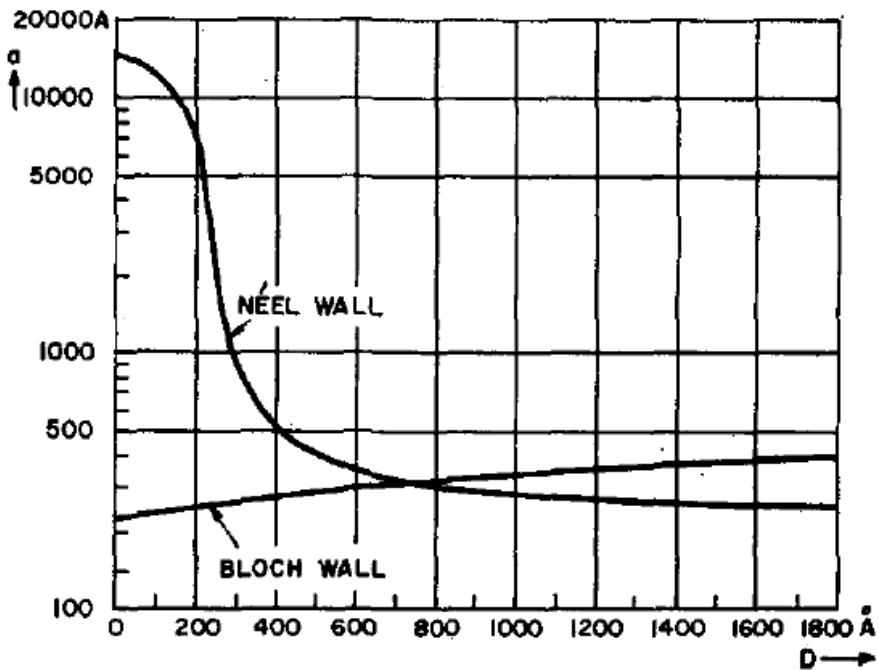


FIG. 2. Wall width of a Bloch wall and of a Néel wall as a function of the film thickness [$A = 10^{-6}$ ergs/cm, $M_s = 800$ G, and $K = 1000$ ergs/cm 3].

The material and geometry decide the type of magnetic domain

- The Neel walls are favored in thin easy-plane anisotropy films
- The Bloch walls are favored in thin perpendicular anisotropy films

Bloch wall energy and width

Exchange contribution for a couple of spins:

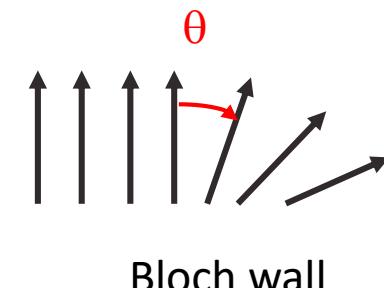
Aligned: $2JS_i \cdot S_j = 2JS^2$

Wall: $2JS_i \cdot S_j = 2JS^2 \cos \theta = 2JS^2(1 - \frac{\theta^2}{2})$

$$\Delta E_{exc} = 2JS^2 - 2JS^2(1 - \frac{\theta^2}{2}) = JS^2\theta^2 \quad \rightarrow$$

Variation in exchange energy for a wall of N spins

$$\Delta E_{exc} = NJS^2\theta^2 = NJS^2(\frac{\pi}{N})^2 = JS^2\frac{\pi^2}{N}$$



Exchange contribution, per unit area, for thin film of material with lattice parameter a : $\gamma_{exc} = JS^2 \frac{\pi^2}{Na^2}$

Anisotropy contribution :

Aligned: $K \sin^2 \theta = 0$

Wall: $\sum_i^N K \sin^2 \theta_i = \frac{NK}{\pi} \int_0^\pi \sin^2 \theta d\theta = \frac{NK}{2}$

Anisotropy contribution, per unit area, for thin film of material with anisotropy per unit volume K : $\gamma_{ani} = \frac{NKa}{2}$

Total DW energy per unit area is:

$$\gamma_{DW} = \gamma_{ani} + \gamma_{exc} = \frac{NKa}{2} + JS^2 \frac{\pi^2}{Na^2}$$

The width of the wall is obtained following: $\frac{d\gamma_{DW}}{dN} = 0 \quad \rightarrow$

$$N = \pi S \sqrt{\frac{2J}{Ka^3}}$$

Bloch wall energy per unit area:

$$\gamma_{DW} = \pi S \sqrt{\frac{2JK}{a}} = \pi \sqrt{AK}$$

$$A = 2JS^2/a$$

Bloch wall width:

$$\delta_{DW} = Na = \pi S \sqrt{\frac{2J}{Ka}} = \pi \sqrt{\frac{A}{K}}$$

is the stiffness

a

The skyrmion size results from a balance between:

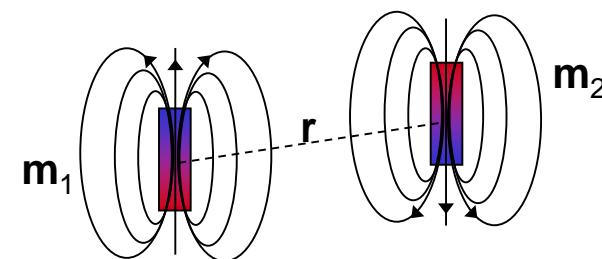
- (i) the DMI energy which favors larger skyrmions,
- (ii) the cost in anisotropy and exchange energy at larger radius, which favours smaller skyrmions,
- (iii) the curvature energy cost at low radius due to the exchange energy
- (iv) the stray field (dipolar energy) which tends to increase the Skyrmion

Table 1. Selection of thin film multilayered materials illustrating Néel skyrmion stabilization. We indicate the material (multilayer system), the measured diameter of the skyrmion core, the magnitude of the DMI $|D| \left(\frac{mJ}{m^2} \right)$, the temperature of the skyrmion stability and the reference of the paper containing the study.

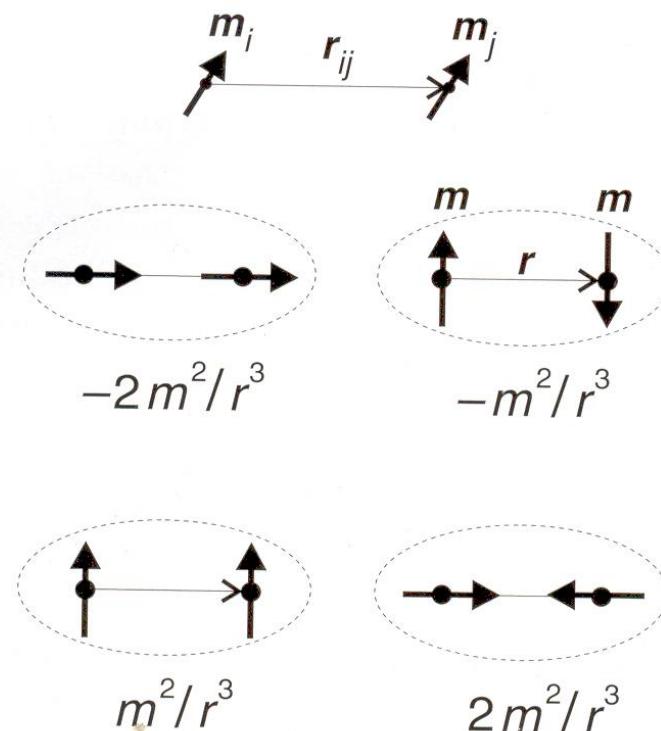
Multilayer System	Diameter of Skyrmion Core (nm)	$ D \left(\frac{mJ}{m^2} \right)$	Temperature of Skyrmion Stability (K)	Reference
Pt/Co/Ta	75–200	1.3	≤ 300	[5]
Pt/Co/MgO	70–130	2.0	≤ 300	[6]
Ir/Co/Pt	25–100	N.A.	≤ 300	[7]
$[\text{Ir}/\text{Co}/\text{Pt}]_{10}$	100	2	> 300	[8]
Pt/CoFeB/MgO	< 250	1.35	≤ 300	[9,10,11]
Pd/CoFeB/MgO	< 200	0.78	≤ 300	[12]
W/CoFeB/MgO	250	0.3–0.7	≤ 300	[13]
Ta/CoFeB/MgO	300	0.33	≤ 300	[14]
Ta/CoFeB/Ta/MgO	1000–2000	0.33	> 300	[14]

Long range interaction between magnetic moments

$$H_{dip} = \frac{\mathbf{m}_1 \cdot \mathbf{m}_2}{r^3} - 3 \frac{(\mathbf{m}_1 \cdot \mathbf{r})(\mathbf{m}_2 \cdot \mathbf{r})}{r^5}$$



\mathbf{m}_1 and \mathbf{m}_2 the magnetic moments of two particles



In the last decade, to overcome the 1Tbit/in² limit, the storage media has adopted perpendicular magnetized media in place of the longitudinal media (ex. the L1₀ phase in FePt)

The out-of-plane configuration reduces the dipolar interaction

